
LLM Agent Evaluations &
Project Overview

Agentic AI
2025.10.6

Outline
• Introduction to LLM agent evaluation and why is it important?
• Types of LLM Agent Eval

– Close-ended vs. Open-ended
– Verifiable vs. Non-verifiable
– Static vs. Dynamic
– Taxonomy of agent eval tasks

• What is a good eval system?
– Outcome Validity

• Case studies of good eval systems
• Course project overview:

– Two types of evals (green agents) in our course project
• Integrating existing benchmarks
• Proposing new benchmarks

LLM Agent Eval: Why Is It Important?

What is Evaluation?

• Evaluation is the systematic, repeatable measurement of models and agents.

• It provides a structured way to measure performance across benchmarks and
environments.

• This helps

– Measure capability progress that is grounded in reproducible evidence.

– Risk assessment

When do we need evaluation?

Why Evaluation Matters

• It enables fair comparisons across models and agents.

• Guides safe & effective deployment decisions by exposing weaknesses and strengths.

• Reliable evaluation of agents is critical to develop effective and safe agents in real-world
applications.

Benchmarks and Evaluation Drives Progress

From LLM Eval to LLM Agent Eval

• LLMs are static, text-to-text systems.

• Agents extend them with planning, tool-use, memory, and multi-step reasoning.

• Agents operate in dynamic environments, requiring more complex evaluation.

Types of LLM (Agent) Eval

Types of Evals

• Close-ended
• Open-ended

– Verifiable
– Non-verifiable

• Static vs. Dynamic Eval

Close-Ended vs. Open-Ended

Close-Ended Tasks

• Limited number of potential answers

• Limited number of correct answers

• Enables automatic evaluation

Close-Ended Tasks

Close-Ended Tasks

• Metrics: Accuracy / Precision / Recall / F1 /
etc.

• Limited to certain easier tasks

Open-Ended Tasks

How to Evaluate Open-Ended Tasks?

• Two types of open-ended tasks:
– Verifiable
– Non-Verifiable

Verifiable Tasks

• Tasks that have an “oracle” or clear criteria to test
if the result is correct or not.
– Math proof
– Code generation

• Only need to build an eval that follows the criteria

Non-Verifiable Tasks

• Tasks without clear test criteria or objective
ground-truth answer
– Storytelling
– Writing style adaptation

• Often need human eval or LLM-as-a-judge

Human Evaluations
• Ask humans to evaluate the quality of the generated text

• Overall or along some specific dimension:
– Fluency
– Coherence / consistency
– Factuality and correctness
– Commonsense
– Style / formality
– Grammaticality
– redundancy

Human Evaluations: Issues
• Human evaluations are regarded as gold

standards

• But it also has issues:
– Slow
– Expensive
– Inter-annotator disagreement
– Intra-annotator disagreement across time
– Not reproducible

LLM as a Judge

LLM as a Judge: Issues
• LLM sometimes is not reliable

– Cross-check with human eval
• LLM output has randomness

– Repeat judging with the same LLM for multiple times
• Different LLMs have different biases

– Majority vote between different LLMs
• Interpretability of scores is poor

– Try using continuous instead of discrete scoring
– Score from multiple perspectives / set multiple rubrics

• Sensitive to vague prompts
– Try design as detailed prompts as possible
– Use chain-of-thought prompt or reasoning mode to get better

evaluation

Static vs. Dynamic Eval

• Static benchmarks have fixed test cases and metrics
– Enable direct, reproducible comparisons between models
– Examples: ImageNet, GLUE, MMLU

• Dynamic benchmarks have continuously updating or
periodically re-generated data

– Stay relevant with real-world data shifts
– Harder to overfit or be contaminated
– Examples: DynaBench, LiveCodeBench

Taxonomy of LLM Agent Eval

Taxonomy of Agent Evals

• Evaluating a specific agent capability
• Evaluating on a specific application
• Evaluating on a general set of applications

Taxonomy of Agent Evals

• Evaluating a specific agent capability
• Evaluating on a specific application
• Evaluating on a general set of applications

Evaluating a Specific Agent Capability

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating a Specific Agent Capability

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating a Specific Agent Capability

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating a Specific Agent Capability

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Taxonomy of Agent Evals

• Evaluating a specific agent capability
• Evaluating on a specific application
• Evaluating on a general set of applications

Evaluating on a Specific Application

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating on a Specific Application

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating on a Specific Application

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating on a Specific Application

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating on a Specific Application
• Other applications

– Safety
• RedCode (https://arxiv.org/pdf/2411.07781)

– Cybersecurity
• CyberGym (https://www.cybergym.io/)
• BountyBench (https://arxiv.org/abs/2505.15216)

– Legal
• LegalAgentBench (https://arxiv.org/abs/2412.17259)

– Healthcare
• MedAgentBench (https://www.qeios.com/read/VN3YH7/pdf)
• HealthBench (https://openai.com/index/healthbench/)

– Finance
• Finance Agent Benchmark (https://www.arxiv.org/pdf/2508.00828)

https://arxiv.org/pdf/2411.07781
https://www.cybergym.io/
https://arxiv.org/abs/2505.15216
https://arxiv.org/abs/2412.17259
https://www.qeios.com/read/VN3YH7/pdf
https://openai.com/index/healthbench/
https://www.arxiv.org/pdf/2508.00828

Taxonomy of Agent Evals

• Evaluating a specific agent capability
• Evaluating on a specific application
• Evaluating on a general set of applications

Evaluating on a General Set of Applications

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

What is a good eval system?

What is a good eval?

https://arxiv.org/pdf/2507.02825

https://arxiv.org/pdf/2507.02825

Outcome Validity Makes a Good Eval

https://arxiv.org/pdf/2507.02825

https://arxiv.org/pdf/2507.02825

Outcome Validity - Judging text results

Outcome Validity - Judging Code Generation

Outcome Validity - Judging Env State Changes

Outcome Validity - Judging Multi-Step Reasoning

Ways That Eval Can Go Wrong
• Data is noisy or biased

– Make sure the test data for evaluation is accurate and diverse
enough!

• Not practical
– Think about the practitioner’s real needs!

• Shortcut - Eval can be gamed
– Avoid any shortcut that your eval probably has!

• Not challenging enough
– Design hard test cases to make sure your green agent is reliable!

• More info: https://arxiv.org/pdf/2502.06559v2

https://arxiv.org/pdf/2502.06559v2

Case Study of Good Eval System

Case Studies
- What is the goal / what to evaluate
- What is a task, what is an env to run the agent to

achieve the goal, what’s the size of the benchmark
- How to evaluate the agent (LLM Judge, etc.)

- Need to generate data in the benchmark, talk about data
pipeline

- What metric to use to make benchmark high quality
(contamination, bias)

- Principles: real-world, have different difficulty levels,
not easy to get saturated. GDPEval is a good example

Case Studies
- What is a good benchmark and what’s the

process of constructing them (data pipeline, to let
students have some ideas on what they need to
do)

- CyberGym (anthropic model card)
- Tau-bench and tau2-bench
- OS World
- GDPEval
- CRMArena
- LegalAgentBench

Case Studies

What is a good benchmark and how to construct it?
- What is the goal / what to evaluate
- What is a task / what is an env to run the agent to achieve the goal
- How to build the data collection pipeline? How to evaluate the agent?
- Principles: real-world, have different difficulty levels, not easy to get

contaminated and saturated

CyberGym
https://www.cybergym.io/

Goal: Evaluate an agent's cybersecurity capabilities by testing its ability to reproduce
real-world vulnerabilities at a large scale

Task: Given a vulnerability description and the pre-patch codebase+executable, agents
must generate a proof-of-concept (PoC) test that successfully triggers the vulnerability
in the corresponding unpatched codebase

Env: a containerized sandbox to run programs
Zhun Wang*, Tianneng Shi* et al. CyberGym: Evaluating AI Agents' Cybersecurity Capabilities with Real-World Vulnerabilities at Scale. arXiv 2025

https://www.cybergym.io/

CyberGym
https://www.cybergym.io/

Anthropic’s latest system card for its model release (Claude 4.5) included
CyberGym to evaluate AI capabilities in cybersecurity.

https://www.cybergym.io/
https://assets.anthropic.com/m/12f214efcc2f457a/original/Claude-Sonnet-4-5-System-Card.pdf

Data Generation Pipeline:

• Built from ARVO dataset and historical, real-world vulnerabilities found by

OSS-Fuzz, a continuous fuzzing project for open-source software

• reconstruct pre/post patch commits & executables and include the ground-truth

PoC; rephrase into concise vuln descriptions with LLMs and manual inspection

How to Evaluate:

• Execute final PoC on pre-patch and post-patch builds. Count success if it (a) triggers

the target vuln only pre-patch (reproduction), or (b) triggers any vuln post-patch

(post-patch finding). Report overall success rate

• Detection is via runtime sanitizers (crash + stack trace), not subjective judging.

• A data contamination analysis is performed by evaluating vuln samples found after

LLM knowledge cutoff dates

CyberGym
https://www.cybergym.io/

https://www.cybergym.io/

Goal: Evaluate an agent's ability to reliably

interact with users and APIs while consistently

following complex, domain-specific policies

Task: Agents resolve a simulated user's goal

(e.g., return a product) using API tools through

a multi-turn, dynamic conversation within

domains like retail or airline customer service

Env: Each domain (e.g., retail, airline) provides

a set of API tools, a specific policy document to

follow, and an LLM-powered user simulator

τ-bench
https://arxiv.org/abs/2406.12045

Shunyu Yao et al. τ-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains. ICLR 2025.

https://arxiv.org/abs/2406.12045

Data Generation Pipeline:

• Manual design of schemas/APIs/policies

• LM-assisted synthetic data generation (GPT-4 helps produce sampling

code; humans polish)

• Manual scenario authorizing + iterative validation with many agent runs

to ensure each task has a unique end-state outcome

How to Evaluate: Evaluation is programmatic and verifiable. Success is

determined by comparing the final database state to the annotated goal

state. Report pass@1 (avg success) and pass@k (all-k successes across i.i.d.

runs) to capture reliability/consistency

τ-bench
https://arxiv.org/abs/2406.12045

https://arxiv.org/abs/2406.12045

Goal: τ² shifts from single-control to dual-control (Dec-POMDP)—both agent and user act
via tools in a shared world stressing coordination & guidance

Task and Env:

• τ was single DB + agent tools, with an LM-only user
• τ² adds two databases (Agent DB + User/Device DB) and separate toolsets; the user is a

simulator constrained by available tools and observable state of the environment

τ2-bench
https://arxiv.org/abs/2506.07982

Victor Barres et al. τ2-Bench: Evaluating Conversational Agents in a Dual-Control Environment. arXiv 2025.

https://arxiv.org/abs/2506.07982

Data Generation Pipeline:

• τ used manual schema/APIs, LM-assisted data, manual scenario

authoring/validation

• τ² pipeline uses LLM-drafted Product Requirements Document (PRD) →

code/mock DBs/unit tests, plus user DB & tools, then do programmatic

compositional tasks creation from atomic subtasks with init/sol/assert

and auto-verification

How to Evaluate: τ evaluates via end-state DB comparison. τ² introduces

categorical checks—environment assertions, communication assertions,

natural language assertions, action assertions; both report pass@k

τ2-bench
https://arxiv.org/abs/2506.07982

https://arxiv.org/abs/2506.07982

Goal: Measure LLM performance on economically valuable, real-world knowledge-work

tasks, comparing AI deliverables to industry experts across diverse occupations

Task and Env: Each task is a realistic work assignment with reference files/context (docs,

data, assets). Models produce a one-shot deliverable (e.g., doc, slide deck, spreadsheet,

diagram, media)

GDPval
https://openai.com/index/gdpval/

OpenAI. GDPval: Evaluating AI Model Performance on Real-World Economically Valuable Tasks. 2025.

https://openai.com/index/gdpval/

Data Generation Pipeline: Tasks authored by vetted professionals (avg 14 yrs

experience), pass a multi-step review (≈5 rounds) plus model-based validation;

prompts mirror day-to-day work and include attachments; gold deliverables are

experts’ own solutions

How to Evaluate:

• Blinded expert graders from the same occupations rank AI vs. human

deliverables as better / as good as / worse

• Also compare time/cost

• Good example of a benchmark with low contamination risk and hard to get

saturated as tasks require domain experts and tied to concrete work product

GDPval
https://openai.com/index/gdpval/

https://openai.com/index/gdpval/

CRMArena
https://arxiv.org/abs/2411.02305

Goal: Evaluate LLM agents on professional

Customer Relationship Management (CRM)

workflows in a realistic, enterprise sandbox

Task: 9 tasks across 3 personas (Service

Agent, Analyst, Manager): New Case

Routing, Knowledge QA, Top Issue

Identification, Monthly Trend Analysis etc.

Env: Live Salesforce sandbox (Simple Demo

Org) with UI & API access; actions via

SOQL/SOSL or function calls; Rich

enterprise schema (16 objects)

Kung-Hsiang Huang et al. CRMArena: Understanding the Capacity of LLM Agents to Perform Professional CRM Tasks in Realistic Environments. NAACL 2025.

https://arxiv.org/abs/2411.02305

Data Generation Pipeline:

• LLM synthesis on Salesforce Service Cloud schema; introduce latent variables

(e.g., agent Skill, customer ShoppingHabit) to create realistic causal patterns.

￼
• Mini-batch prompting → de-duplication (string match) + dual verification

(format & content) before upload; LLM paraphrasing for query diversity

How to Evaluate:

• Automatic metrics per task: F1 for Knowledge QA; Exact Match on ground-truth

IDs for all other tasks; optional pass@k to report multi-run

reliability/consistency

• Also reports #turns/tokens/$ cost

CRMArena
https://arxiv.org/abs/2411.02305

https://arxiv.org/abs/2411.02305

Goal: Evaluate LLM agents on realistic Chinese legal workflows that require

multi-hop retrieval/reasoning and legal writing with tool use.

Task and Env: Multi-turn agent interaction over a text-based environment

built from 17 corpora (14 tabular DBs + 3 retrieval corpora) with 37 tools (28

DB tools, 5 math, 3 text retrievers, 1 system “Finish”). Agents must plan, call

tools with parameters, read observations, and iterate.

• E.g. “Which court handles the highest-value cases of <entity>?”

(requires chaining court/case DB tools).

LegalAgentBench
https://arxiv.org/abs/2412.17259

https://arxiv.org/abs/2412.17259

Data Generation Pipeline: (1) Build a planning tree from tool-call

dependencies; (2) select serial (1–5 hop) and parallel paths; (3) choose entities

that execute successfully; (4) rewrite questions with GPT-4 to hide solution

paths and match real phrasing; (5) programmatically generate answers via the

toolchain; (6) human verification of questions, paths, and answers.

How to Evaluate:

• Success Rate: keyword overlap with gold key_answer.

• Process/Progress Rate: includes intermediate key_middle keywords to

reward partial progress.

• Other Metrics: BERTScore and token count for efficiency.

LegalAgentBench
https://arxiv.org/abs/2412.17259

https://arxiv.org/abs/2412.17259

What are Green Agents?

Testing my Agent
• Like math exams are designed by math

teachers and physics exams by physics
teachers, Different assessments are
defined by a special hosting agent, or
green agent.

• This green agent determines the type of
assessment and defines the specific tasks
to be performed.

• The other agents involved are called
participant agents, or white agents.

Testing my Agent
* Why “Green” and “White”?

• The color-based naming comes from the project’s early days. When
exploring safety benchmarks, the team discussed red-teaming and
blue-teaming setups. To refer to judges and other participants, we
temporarily introduced more colors—green and gray. Over time,
“green agent” became the established name for the hosting agent,
while all others were simplified into “white agents.”

Responsibilities of the Green Agent
The green agent carries multiple responsibilities:

• Preparing the environment
• Distributing test tasks to participant agents
• Collecting their results
• Verifying the environment
• Reporting back to the platform

Responsibilities of the Green Agent
• Green agents are specifically designed to serve as evaluators
• They essentially act as the technicians at the repair shop,

orchestrating the entire evaluation process.
• Green agents can interact with the platform through MCP, A2A or

APIs, request permissions and resources, and submit results.

The Full Assessment Flow
1. The platform first confirms that all agents, including the green agent,

are online and reset.
2. It then sends a task to the green agent, including the URLs of the

participant agents to be tested.
3. The green agent orchestrates the interaction: assigning tasks,

supervising execution, managing tools or environments, and
continuously reporting updates back to the platform.

4. At the end, the green agent submits the metrics—which it defines
through its implementation.

The green agent dictates what metrics get measured

How Green Agents Are Built
Typically, a green agent includes:

• A dataset of test tasks
• A predefined testing process (e.g., which agent to test first, in what

order tasks are sent, and how tools are provided)
• The environment where the tasks run: access to additional tools or

MCP modules required for the tasks, along with instructions for the
white agents on how to use them

How Green Agents Are Built
• AgentBeats provides a prompt-based toolkit to help developers

quickly spin up a prototype green agent, making it easy to get started.
• For more rigorous or complex testing—say, strict workflows or custom

environments—developers can also hand-code the logic of a green
agent.
– For class projects, we expect most green agents from unit 2 & 3 &

4 groups will be coding-based green agents; and many green
agents from unit 1 groups may be prompt-based agents

• Ultimately, as long as it complies with the A2A protocol, any web
service can serve as a green agent.

Two Types of Projects for Building Green Agents

• Integrating an existing benchmark

• Building a new benchmark

Type 1: Integrating Existing Benchmarks

• Goal: Adapt an existing benchmark (already published/tested) and
integrate as a green agent in AgentBeats
– E.g. SWE-bench Verified, Terminal bench

• Largely reuse existing evaluation metrics or rubrics
• Sample ideas:

https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2
EFakbmHpU_z31vnkf0c2Y/

https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2EFakbmHpU_z31vnkf0c2Y/
https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2EFakbmHpU_z31vnkf0c2Y/

Type 1: Integrating Existing Benchmarks
In addition to integration into agentbeats platform, you need to
provide a benchmark quality analysis – checking the quality and
reliability of the existing benchmark.

• Manual Validation: Sample and check data correctness, clarity, and difficulty

• Evaluator Check: Confirm metrics/judges align with true task success

• Bias & Limitation Notes: Highlight any gaps or weaknesses

Also consider expanding the benchmark and correcting the benchmark to

improve its quality, size, and diversity.

Type 1: Integrating Existing Benchmarks

Main Workflows:
• Step 1: Integration

– Convert problem formats to correct format like A2A
– Implement dataset loaders & interfaces
– Add quality checks for correctness & reproducibility

• Step 2: Benchmark Quality Analysis
• Step 3: Correction and Expansion

Type 1: Integrating Existing Benchmarks

Main Workflows:
• Step 1: Integration
• Step 2: Benchmark Quality Analysis: check the quality and reliability

of the existing benchmark.
– Manual Validation: Sample and check data correctness, clarity, and difficulty

– Evaluator Check: Confirm metrics/judges align with true task success

– Bias & Limitation Notes: Highlight any gaps or weaknesses

• Step 3: Correction and Expansion

Type 1: Integrating Existing Benchmarks

Main Workflows:
• Step 1: Integration
• Step 2: Benchmark Quality Analysis
• Step 3: Correction and Expansion

– Correct the benchmark if there are errors
– Expand the benchmark to improve its quality, size, and diversity.

SWE-bench and SWE-bench Verified
https://openai.com/index/introducing-swe-bench-verified/

• Problem (Original SWE-bench):

– Some tasks had underspecified issue descriptions or overly specific/misaligned

tests; setup friction sometimes caused false negatives.

• Correction:

– Added human verification by 93 professional developers on 1,699 samples

• Issues flagged: 38.3% underspecification, 61.1% unfair unit tests; total 68.3%

of samples filtered out

– Filtered to 500 verified tasks

• Outcome:

– Curated a higher-quality subset with enhanced task diversity and difficulty balance

– More trustworthy, replicable, and comprehensive benchmark

• GPT-4o reaches 33.2% resolved on Verified (vs. 16% on original using best scaffold),

indicating prior underestimation of capability.

https://openai.com/index/introducing-swe-bench-verified/

Type 2: Building New Benchmarks
• Create new benchmarks (no existing source)
• Realistic daily tasks → showcase agentic reasoning
• Scope by units:

– 1-unit students: focus on prompt design + simple data generation
– >1 units: include evaluation rubrics & multi-round setups

Type 2: Building New Benchmarks
• Tasks should reflect useful, real-world scenarios

– e.g., organize calendar, schedule meetings, manage to-dos
• Evaluation: Automatic or lightweight human checks
• We encourage you to build multi-agent benchmarks (e.g., Synthesizer

+ Analyzer roles)

Step-by-Step Checklist for
Building Your Green Agent

Step-by-Step Checklist

1. Choose the task you want to evaluate on

- E.g., Ticket-booking agent

Step-by-Step Checklist

2. Design the environment that the agents being tested needs to run
in

- The tools that the agent can interact with, the actions that the
agent can make, and the env feedback to the agent after each
action

- E.g., Tools can be web browser or an APP for ticket booking.
Actions can be mouse clicking and keyboard typing, or the APIs
provided by the APP. Env feedback can be the new webpage
popped up every time the agent clicks on a button.

Step-by-Step Checklist

3. Design the metrics that your green agent
evaluates with

- E.g., the success rate of booking a ticket; how
cheap the ticket is; whether the ticket
satisfies user’s requirements; etc.

Step-by-Step Checklist

4. Design test cases to evaluate your green agent

- Think about different scenarios of white agents trying to complete the task
- Design test cases of white agents succeeding/failing to complete the task in

different ways, along with ground-truth eval result for these cases.
- Include as many edge cases as possible
- Use these test cases to evaluate if your green agent gives reliable evaluation

results.
- E.g., test cases can include a white agent successfully books the ticket; a

white agent books the wrong ticket/a more expensive ticket; a white agent
fails to find the website for booking tickets; etc.

Project Grading Rubric [for new benchmarks]
• Goal & Novelty: Is your benchmark important, novel, and covering new capability

space?

• Scope & Scale: Is the benchmark large and diverse enough to give reliable results?

• Evaluator Quality: Are metrics clear? Is your judge/evaluator high quality and

consistent?

• Validation: Did you perform manual checks or spot validation on the evaluation

outputs from your green agent?

• Reliability: Do your evaluation scripts and green agents run robustly on AgentBeats?

• Quality Assurance: Any bias or contamination checks included?

• Realism: Is the benchmark realistic, e.g., with real world workload, instead of toy or

unrealistic settings

• Impact: Is the benchmark reusable, well-documented, and presented clearly?

Project Grading Rubric [for existing benchmarks]
• Analysis: Analyze quality issues of the original benchmark and find any flaws it has.

• Faithfulness: Is your implementation reproducing the results from the original

benchmark (excluding the flaws you fixed)?

• Quality Assurance: Is your implementation correcting flaws in the original benchmark

and expanding the coverage of the original benchmark?

• Evaluator Quality: Are metrics clear? Is your judge/evaluator high quality and

consistent?

• Validation: Did you perform manual checks or spot validation on the evaluation

outputs from your green agent?

• Reliability: Do your evaluation scripts and green agents run robustly on AgentBeats?

• Quality Assurance: Any bias or contamination checks included?

• Impact: Is your implementation reusable, well-documented, and presented clearly?

Green Agent Project Ideas
• https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2

EFakbmHpU_z31vnkf0c2Y/

https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2EFakbmHpU_z31vnkf0c2Y/
https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2EFakbmHpU_z31vnkf0c2Y/

Coding Example:
Supporting Tau-bench

1. Sort out the interface

Principles:
1. Human should be able to solve it if presented the same task.
2. The solving procedure should be as agent-friendly as possible. (so

that the agent can solve it)
Example:
- Web browsing agent: url vs. tool actions
- Coding agent: provide coding env vs. provide repository & expect

patches
- Werewolf game agent: text-based vote confirmation vs. tool-based

confirmation

1. Sort out the interface

• Read the paper → think about task formulation

• Read their codebase → see how to deliver the
same piece of information with a2a format,
with minimal code intrusion

1. Sort out the interface

Two key challenges:
1. Cross-agent tool use

a. In the original repo, tool is directly provided to “completion” interface
b. How shall we evaluate using a standardized agent interface

i. “Special” white agents, with tool access
1. Less standardized

ii. Explain this tool-access request to white agent, then ask for tool names / args
1. Problem: cannot leverage agent internal tool-call mechanisms

iii. Provide an MCP → require dynamic discovery

2. Migrate evaluation
a. Tool trace is not directly visible to green agent

1. Sort out the interface

Two key challenges:
1. Cross-agent tool use

a. In the original repo, tool is directly provided to “completion” interface
b. How shall we evaluate using a standardized agent interface

i. “Special” white agents, with tool access
1. Less standardized

ii. Explain this tool-access request to white agent, then ask for tool names / args
1. Problem: cannot leverage agent internal tool-call mechanisms

iii. Provide an MCP → require dynamic discovery

2. Migrate evaluation
a. Tool trace is not directly visible to green agent

https://github.com/sierra-research/tau-bench/blob/main/tau_bench/run.py#L20

https://github.com/sierra-research/tau-bench/blob/main/tau_bench/run.py#L20

2. Design the workflow
• Kickoff script: send message to green agent to kick off the test

– What information to include

– Message format

• Green agent: coding-based, import tau_bench
– How to change to the initial prompt

– How to incorporate the final scoring procedure / what are the metrics

• White agent: prompt-based / LLM-workflow
– Which SDK to use

– What prompt might help with the performance

3. Impl:
Kickoff script

3. Impl:
Green agent

(MCP-based impl would be different)

3. Impl:
White agent
(Google ADK)

Next step: integration with AgentBeats
After impl green/white/kick_off → 90% DONE
Next: make it reproducible & open accessible → leverage
agentbeats
Update checklist:
1. How to get (remote) agent URL / MCP server URL
2. How to access LLM API
3. How to report result & add traces
4. Package the repo for platform hosting
→ see documentation

Helpful materials
https://google.github.io/adk-docs/a2a/intro/

https://a2a-protocol.org/latest/

http://ape.agentbeats.org/

https://google.github.io/adk-docs/a2a/intro/
https://a2a-protocol.org/latest/
http://ape.agentbeats.org/

Helpful tools

Helpful tools (Google ADK, for OpenAI, check the online

logging page)

Reference & Credits
• https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1246/slide

s/cs224n-spr2024-lecture11-evaluation-yann.pdf
• https://arxiv.org/abs/2503.16416
• https://arxiv.org/abs/2507.02825

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1246/slides/cs224n-spr2024-lecture11-evaluation-yann.pdf#page=4.00
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1246/slides/cs224n-spr2024-lecture11-evaluation-yann.pdf#page=4.00
https://arxiv.org/abs/2503.16416
https://arxiv.org/abs/2507.02825

Q&A
agentbeats concepts & platform / standardizing agent evaluation / …

