LLM Agent Evaluations &
Project Overview

Agentic Al

2025.10.6

Outline

Introduction to LLM agent evaluation and why is it important?
Types of LLM Agent Eval
— Close-ended vs. Open-ended
— Verifiable vs. Non-verifiable
— Static vs. Dynamic
— Taxonomy of agent eval tasks
What is a good eval system?
— Outcome Validity
Case studies of good eval systems
Course project overview:
— Two types of evals (green agents) in our course project
* Integrating existing benchmarks
* Proposing new benchmarks

LLM Agent Eval: Why Is It Important?

What is Evaluation?

Evaluation is the systematic, repeatable measurement of models and agents.
It provides a structured way to measure performance across benchmarks and
environments.

This helps
— Measure capability progress that is grounded in reproducible evidence.

— Risk assessment

When do we need evaluation?

Model
Trai Deplo
ain EmEE) Develop) i ploy
Super fast - Super fast - Trustworthy
Super cheap - Super cheap - Fast - Task-specific
Differentiable - Avoid shortcuts - Cheap - Absolute
No shortcut
Publish

- Standardized - ~Cheap

- Reproducible - Crude metrics may be fine

- Easy to work with - Fine-grained

- “~Fast distinguishability

- Broad coverage - Good difficulty

Why Evaluation Matters

It enables fair comparisons across models and agents.

Guides safe & effective deployment decisions by exposing weaknesses and strengths.
Reliable evaluation of agents is critical to develop effective and safe agents in real-world
applications.

AVERACGE (%)

100

—_

W
o

v

N

Benchmarks and Evaluation Drives Progress

RoBERTa=bas€ 125M (fine-tuned)

Jan'20

GPT-3 1758 (fine-tuned)
UnifiedQA 11B

Jul '20

Jan 21

Ju

21

MMLU

Chinchilla 70B.(5-=shot)

Gopher 2808 (5-shot)

Jan '22

Jul 22

GPT-4 (few-shot)

Flan-U-PaLM.5408B

Jan '23

Jul '23

Gemini Ultra ~1760B

Jan 24

From LLM Eval to LLM Agent Eval

* LLMs are static, text-to-text systems.
* Agents extend them with planning, tool-use, memory, and multi-step reasoning.
e Agents operate in dynamic environments, requiring more complex evaluation.

Types of LLM (Agent) Eval

Types of Evals

* Close-ended

 Open-ended
- Verifiable
_ Non-verifiable

e Static vs. Dynamic Eval

Close-Ended vs. Open-Ended

Close-ended evaluations

Open ended evaluations

Example
Text: Read the book, forget the movie!
Label: Negative

Context (human-written): In a shocking finding, scientist discovered a herd of unicoms living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

Close-Ended Tasks

. Limited number of potential answers

. Limited number of correct answers

. Enables automatic evaluation

Close-Ended Tasks

Sentiment analysis: SST /IMDB / Yelp ...

Example

Text: Read the book, forget the movie!
Label: Negative

Entailment: SNLI

Example

Text: A soccer game with multiple males playing.
Hypothesis: Some men are playing sport.

Label: Entailment

Name entity recognition: CoNLL-2003
Part-of-Speech: PTB

Close-Ended Tasks

. Metrics: Accuracy / Precision / Recall / F1/
etc.

. Limited to certain easier tasks

Open-Ended Tasks

* Long generations with too many possible correct answers to enumerate
* => can’t use standard ML metrics

* There are now better and worse answers (not just right and wrong)

* Example:
* Summarization: CNN-DM / Gigaword
* Translation: WMT
* Instruction-following: Chatbot Arena / AlpacaEval / MT-Bench

How to Evaluate Open-Ended Tasks?

. Two types of open-ended tasks:
- Verifiable
- Non-Verifiable

Verifiable Tasks

. Tasks that have an “oracle” or clear criteria to test

if the result is correct or not.
- Math proof
- Code generation

. Only need to build an eval that follows the criteria

Non-Verifiable Tasks

. Tasks without clear test criteria or objective

ground-truth answer

- Storytelling

- Writing style adaptation

. Often need human eval or LLM-as-a-judge

Human Evaluations

Ask humans to evaluate the quality of the generated text

Overall or along some specific dimension:
-~ Fluency
- Coherence / consistency
- Factuality and correctness
- Commonsense
— Style / formality
- Grammaticality
-~ redundancy

Human Evaluations: Issues

. Human evaluations are regarded as gold
standards

. But it also has issues:

- Slow

- Expensive

- Inter-annotator disagreement

- Intra-annotator disagreement across time
-~ Not reproducible

LLM as a Judge

LLM

Evaluate
w —8

 Use a LM as a reference free evaluator
* Surprisingly high correlations with human

e Common versions: AlpacaEval, MT-bench

LLM as a Judge: Issues

LLM sometimes is not reliable

— Cross-check with human eval
LLM output has randomness

- Repeat judging with the same LLM for multiple times
Different LLMs have different biases

- Majority vote between different LLMs
Interpretability of scores is poor

- Try using continuous instead of discrete scoring

- Score from multiple perspectives / set multiple rubrics
Sensitive to vague prompts

- Try design as detailed prompts as possible

- Use chain-of-thought prompt or reasoning mode to get better

evaluation

Static vs. Dynamic Eval

. Static benchmarks have fixed test cases and metrics

- Enable direct, reproducible comparisons between models
- Examples: ImageNet, GLUE, MMLU

Dynamic benchmarks have continuously updating or
periodically re-generated data
— Stay relevant with real-world data shifts

_ Harder to overfit or be contaminated
- Examples: DynaBench, LiveCodeBench

Taxonomy of LLM Agent Eval

Taxonomy of Agent Evals

. Evaluating a specific agent capability
. Evaluating on a specific application
. Evaluating on a general set of applications

Taxonomy of Agent Evals

. Evaluating a specific agent capability

Evaluating a Specific Agent Capability

AQUA-RAT (Ling et al., 2017); HotpotQA (Yang et al., 2018); ARC
(Clark et al., 2018a); StrategyQA (Geva et al., 2021); GSMS8K (Cobbe
et al., 2021); MATH (Hendrycks et al., 2021b); Game of 24 (Yao
]‘ et al., 2023); MINT (Wang et al., 2023); PlanBench (Valmeekam et al.,

2023); FlowBench (Xiao et al., 2024); FOLIO (Han et al., 2022); P-
FOLIO (Han et al., 2024); MultiRC (Khashabi et al., 2018); MUSR
(Sprague et al., 2023); BBH (Suzgun et al., 2022); ToolEmu (Ruan
et al., 2023); MINT (Wang et al., 2023); AutoPlanBench (Stein et al.,
2023); ACPBench (Kokel et al., 2024); Natural Plan (Zheng et al., 2024)

Planning and Multi-
Step Reasoning (§2.1)

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating a Specific Agent Capability

|

Function Calling
& Tool Use (§2.2)

],

\

BFCL (Yan et al., 2024); ToolBench (Qin et al., 2023); ToolAlpaca
(Tang et al., 2023); APIBench (Patil et al., 2025); API-Bank (Li et al.,

2023); NexusRaven (team, 2023); Seal-Tools (Wu et al., 2024b);
ComplexFuncBench (Zhong et al., 2025); ToolSandbox (Lu et al.,
2024); RestBench (Song et al., 2023); APIGen (Liu et al., 2024c);
StableToolBench (Guo et al., 2024); NESTFUL (Basu et al., 2024b)

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating a Specific Agent Capability

; LLF-Bench (Cheng et al., 2023); LLM-Evolve (You
{ Self-Reflection (§2.3) J_| et al., 2024); Reflection-Bench (Li et al., 2024)

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating a Specific Agent Capability

Memory (§2.4)

~

NarrativeQA (KocCisky et al., 2018); OMSum (Zhong et al., 2021);
QUALITY (Pang et al., 2021); RAISE(Liu et al., 2024a); ReadA-

gent (Lee et al., 2024); MemGPT (Packer et al., 2024); LoCoMo
(Maharana et al., 2024); A-MEM (Xu et al., 2025); StreamBench

(Wu et al., 2024a); LTMbenchmark (Castillo-Bolado et al., 2024a)

J

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Taxonomy of Agent Evals

. Evaluating on a specific application

Evaluating on a Specific Application

MiniWob (Shi et al., 2017); MiniWoB++ (Liu et al., 2018); Web-

Shop (Yao et al., 2022); Mind2web (Deng et al., 2023); WebVoy-
ager (He et al., 2024); WebLinX (Lu et al., 2024); WebArena

{ Web Agents (§3.1)),— (Zhou et al., 2023); VisualWebArena (Koh et al., 2024); MMInA

) (Zhang et al., 2024); AssistantBench (Yoran et al., 2024); Web-
Canvas (Pan et al., 2024b); ST-WebAgentBench (Levy et al., 2024);

WorkArena (Drouin et al., 2024); WorkArena++ (Boisvert et al., 2025)

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating on a Specific Application

HumanEval (Chen et al., 2021b); SWE-bench (Jimenez et al., 2023);
SWE-bench Verified (OpenAl, 2024); SWE-bench Lite (SWE-

‘[{ Software Engineering]_ bench Lite, 2024); SWE-bench+ (Aleithan et al., 2024); SWE-
|] Agents (§3.2) | bench Multimodal (Yang et al., 2024); TDD-Bench Verified

(Ahmed et al., 2024); SWT-Bench (Miindler et al., 2024); I7-
Bench (Jha et al., 2025); SWELancer (Miserendino et al., 2025)

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating on a Specific Application

ScienceQA (Lu et al., 2022); QASPER (Dasigi et al., 2021); MS? (DeY-
oung et al., 2021); ScienceWorld(Wang et al., 2022a); SUPER (Bogin
et al., 2024); Ideation (S1 et al., 2025); AAAR-1.0 (Lou et al., 2025);

ScienceAgentBench (Chen et al., 2024); CORE-Bench (Siegel et al.,
2024); SciCode (Tian et al., 2024b); MLGym-Bench (Nathani et al., 2025);
DiscoveryWorld (Jansen et al., 2024); LAB-Bench (Laurent et al., 2024)

{ Scientific Agents (§3.3) }—

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating on a Specific Application

Conversational
Agents (§3.4)

ABCD (Chen et al., 2021a); MultiWOZ (Budzianowski et al.,
2018); SMCalFlow (Andreas et al., 2020); ALMITA (Arcad-
inho et al., 2024); 7-Bench (Yao et al., 2024); IntellAgent
(Levi and Kadar, 2025a); LTM (Castillo-Bolado et al., 2024b)

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

Evaluating on a Specific Application

e QOther applications

— Safety
» RedCode (https://arxiv.org/pdf/2411.07781)

— Cybersecurity
* CyberGym (https://www.cybergym.io/)
* BountyBench (https://arxiv.org/abs/2505.15216)

— Legal
* LegalAgentBench (https://arxiv.org/abs/2412.17259)

— Healthcare
* MedAgentBench (https://www.geios.com/read/VN3YH7/pdf)
* HealthBench (https://openai.com/index/healthbench/)

— Finance
* Finance Agent Benchmark (https://www.arxiv.org/pdf/2508.00828)

https://arxiv.org/pdf/2411.07781
https://www.cybergym.io/
https://arxiv.org/abs/2505.15216
https://arxiv.org/abs/2412.17259
https://www.qeios.com/read/VN3YH7/pdf
https://openai.com/index/healthbench/
https://www.arxiv.org/pdf/2508.00828

Taxonomy of Agent Evals

. Evaluating on a general set of applications

Evaluating on a General Set of Applications

GAIA (Mialon et al., 2023); AgentBench (Liu et al., 2023b);
}_< Galileo’s Agent Leaderboard (Bhavsar, 2025); OSWorld (Xie

)—] et al., 2024); AppWorld (Trivedi et al., 2024); OmniACT (Kapoor
et al., 2024a); TheAgentCompany (Xu et al., 2024); CR-
MArena (Huang et al., 2025); HAL (Stroebl et al., 2025)

Generalist Agents
Evaluation (§4)

https://arxiv.org/pdf/2503.16416

https://arxiv.org/pdf/2503.16416

What is a good eval system?

What is a good eval?

Agentic tasks

- Benchmark evaluations —
< Y Task . =
§ (00) I_E descriptions Task Outcome [L.4"] string matching EEI State matching > =
® - Textual responses o)
g,- Al Agent C@i:l Environments - Code Testing % Customized Results
o 1 s - Environment states metrics]
: x TOOIS - i 2 :
1 I L]
[1 '
B
o Target Task Validity > Task Outcome Validity > Q(Positive
§ Capability Z; \ Success Results
o

https://arxiv.org/pdf/2507.02825

https://arxiv.org/pdf/2507.02825

Outcome Validity Makes a Good Eval

Agentic tasks @)
=d g H Benchmark evaluations p—
< Y Task . =
§ (00) I_E descriptions Task Outcome [L.4"] string matching EEI State matching > =
® - Textual responses o)
o Al Agent C@i:l Environments - Code Testing % Customized Results
& 1 s - Environment states metrics]

: x Tools A i 2 :

1 ' 1
E | '
§ Target Task Validity b Task Outcome Validity > Q(Positive
§ Capability Z; \ Success Results
(&}

https://arxiv.org/pdf/2507.02825

https://arxiv.org/pdf/2507.02825

Outcome Validity - Judging text results

Information Acquisition

Whole string matching or substring matching:
0.a.1. Considers expressions semantically equivalent to ground truth.

0.a.2. Handles redundant words used by agents.

Substring matching:
0.b.1. Handles negation modifiers used by agents.
0.b.2. Is robust against systematically listing all possible answers.

0.b.3. Ground truth is sufficiently complex to prevent guessing.

LLM-as-a-Judge:

O.c.1. Demonstrates documented or experimental evidence of the judge’s
accuracy, self-consistency, and agreement with human.

0.c.2. Is designed to resist adversarial inputs and reward hacking.

Outcome Validity - Judging Code Generation

Code Generation

Unit testing or end-to-end testing:

0.d.1. Verifies test cases for correctness and quality (e.g., by human).

0.d.2. Measures quality of test cases using objective metrics (e.g.,
code coverage, cyclomatic complexity control).

Fuzz testing:

O.e.l. Addresses potential edge cases.

O.e.2. Ensures comprehensive coverage of all relevant input variations
(e.g., data types, memory layouts, value ranges).

0.e.3. Generates inputs that the code under testing is sensitive to.

End-to-end testing:
O.f.1. Exercises all relevant parts of the code being tested.

0.f.2. Prevents non-deterministic (“flaky”) test results.

Outcome Validity - Judging Env State Changes

State matching:
0.g.1. Ground truth includes all states achievable after success.
0.g.2. Checks relevant and irrelevant states for the challenge.

0.g.3. Ground truth is complex to prevent trivial state modifications.

State Matching

Outcome Validity - Judging Multi-Step Reasoning

Answer matching:
0.h.1. Specifies required answer formats in challenge descriptions.

0.h.2. Minimizes the possibility of success by random guessing.

Quality measure:

O.1.1. Designs quality metrics that prevent exploitation (e.g., achieving
high scores by reward hacking).

Multistep Reasoning

Ways That Eval Can Go Wrong

Data is noisy or biased
- Make sure the test data for evaluation is accurate and diverse
enough!
Not practical
- Think about the practitioner’s real needs!
Shortcut - Eval can be gamed
- Avoid any shortcut that your eval probably has!
Not challenging enough
— Design hard test cases to make sure your green agent is reliable!
More info: https://arxiv.org/pdf/2502.06559v2

https://arxiv.org/pdf/2502.06559v2

Case Study of Good Eval System

Case Studies

- What is the goal / what to evaluate
- What is a task, what is an env to run the agent to
achieve the goal, what’s the size of the benchmark

How to evaluate the agent (LLM Judge, etc.)
- Need to generate data in the benchmark, talk about data
pipeline
- What metric to use to make benchmark high quality
(contamination, bias)
Principles: real-world, have different difficulty levels,

not easy to get saturated. GDPEval is a good example

Case Studies

- What is a good benchmark and what’s the
process of constructing them (data pipeline, to let

students have some ideas on what they need to

do)
- CyberGym (anthropic model card)

- Tau-bench and tau2-bench

- OS World

- GDPEval

- CRMArena

- LegalAgentBench

Case Studies

What is a good benchmark and how to construct it?

- What is the goal / what to evaluate

- What is a task / what is an env to run the agent to achieve the goal

- How to build the data collection pipeline? How to evaluate the agent?

- Principles: real-world, have different difficulty levels, not easy to get
contaminated and saturated

CyberGym

https://www.cybergym.io/

Task Inputs PoC Generation PoC Evaluation

Pre-Patch rrn Post-Patch Evaluation

@ Target Vulnerability Description % [g Language Model Agent] % Executable W Executable Outcome

The dnie module does not properly check the

. : Target Vul.
length of uncompressed data, which can lead Trigger No Trigger Re;?oduced
to a heap buffer overflow vulnerability. Generated s

PoC Vulnerability
s 2 s Post-Patch
Triggered? Any Trigger Vul. Found
n Codebase (Pre-Patch)
[(src/ [tests/ [doc/ E Makefile Executable (Pre-Patch) [No Trigger No Trigger Fail]

Goal: Evaluate an agent's cybersecurity capabilities by testing its ability to reproduce
real-world vulnerabilities at a large scale

Task: Given a vulnerability description and the pre-patch codebase+executable, agents
must generate a proof-of-concept (PoC) test that successfully triggers the vulnerability
in the corresponding unpatched codebase

Env: a containerized sandbox to run programs

Zhun Wang*, Tianneng Shi* et al. CyberGym: Evaluating Al Agents' Cybersecurity Capabilities with Real-World Vulnerabilities at Scale. arXiv 2025

https://www.cybergym.io/

CyberGym

https://www.cvbergym.io

Anthropic’s latest system card for its model release (Claude 4.5) included
CyberGym to evaluate Al capabilities in cybersecurity.

Model Performance Comparison on Vulnerability Reproduction

0.70 0.667
[0 Claude Sonnet 3.7
0.60 B Claude Sonnet 4
B Claude Opus 4.1
()] @ Claude Sonnet 4.5
9 0.50 : 0.472
8 B OpenHands + Claude Sonnet 4 (Public Leaderboard)
S
0 0.40
-
o
g‘ 0.30 0.289
o
©
Qo
© o020
a. 0.145
0.10
0.00

1 Trial 30 Trials

https://www.cybergym.io/
https://assets.anthropic.com/m/12f214efcc2f457a/original/Claude-Sonnet-4-5-System-Card.pdf

CyberGym

https://www.cybergym.io/

Data Generation Pipeline:

* Built from ARVO dataset and historical, real-world vulnerabilities found by
OSS-Fuzz, a continuous fuzzing project for open-source software

* reconstruct pre/post patch commits & executables and include the ground-truth
PoC; rephrase into concise vuln descriptions with LLMs and manual inspection

How to Evaluate:

* Execute final PoC on pre-patch and post-patch builds. Count success if it (a) triggers
the target vuln only pre-patch (reproduction), or (b) triggers any vuln post-patch
(post-patch finding). Report overall success rate

e Detection is via runtime sanitizers (crash + stack trace), not subjective judging.

* A data contamination analysis is performed by evaluating vuln samples found after
LLM knowledge cutoff dates

https://www.cybergym.io/

T-bench

https://arxiv.org/abs/2406.12045

Goal: Evaluate an agent's ability to reliably
interact with users and APIs while consistently
following complex, domain-specific policies

Task: Agents resolve a simulated user's goal
(e.g., return a product) using API tools through
a multi-turn, dynamic conversation within
domains like retail or airline customer service

Env: Each domain (e.g., retail, airline) provides
a set of API tools, a specific policy document to
follow, and an LLM-powered user simulator

Tools

User

(a) t-bench setup

get_user_details book_reservation

cancel_reservation update_reservation_flights

Domain policy as system prompt
Current time is 2024-5-15 15:00:00 EST.
- Basic economy cannot be modified.
- Basic economy cannot be cancelled after 24 hours
of booking... (more rules omitted)

User instruction as system prompt
You are mia_li_2017, and want to change the your
most recent reservation to fly to SF instead of LA on
the same day. If change is not possible, you want the
agent to cancel and rebook ... You are concise.

(b) Example trajectory in t-airline

& Change flight

{‘cabin’: ‘basic_economy’,
‘created_at’: <20240514-1800°.

get_reservation_details[JK9019]
! (Read database)

JK9019 is basic economy and cannot
be changed. But since it is within

24h, I can cancel it and book a new

one. Do you want me to do it?

... In that case just cancel it

cancel_reservation[JK9019]
{..., ’status’: ‘cancelled’} (Write database)

Figure 1: (a) In 7-bench, an agent interacts with database API tools and an LM-simulated user to
complete tasks. The benchmark tests an agent’s ability to collate and convey all required information
from/to users through multiple interactions, and solve complex issues on the fly while ensuring it
follows guidelines laid out in a domain-specific policy document. (b) An example trajectory in
T-airline, where an agent needs to reject the user request (change a basic economy flight) following
domain policies and propose a new solution (cancel and rebook). This challenges the agent in
long-context zero-shot reasoning over complex databases, rules, and user intents.

Shunyu Yao et al. T-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains. ICLR 2025.

https://arxiv.org/abs/2406.12045

T-bench

https://arxiv.org/abs/2406.12045

Data Generation Pipeline:

* Manual design of schemas/APls/policies
* LM-assisted synthetic data generation (GPT-4 helps produce sampling

code; humans polish)
* Manual scenario authorizing + iterative validation with many agent runs

to ensure each task has a unique end-state outcome

How to Evaluate: Evaluation is programmatic and verifiable. Success is
determined by comparing the final database state to the annotated goal
state. Report pass@1 (avg success) and pass@k (all-k successes across i.i.d.
runs) to capture reliability/consistency

https://arxiv.org/abs/2406.12045

Agent Domain Policy

The current time is 2025-02-25
12:08:00 EST.

As a telecom agent, you can help
users with technical support.

User Instruction

You mobile data is not working
properly. It is very slow. You want
to fix it and get excellent internet
speed on your phone.

T’-bench

https://arxiv.org/abs/2506.07982

& Agent

Tools ---

Agent

‘ User

User

Tools

@is_tool(ToolType.READ)
def get_customer_by_id(
customer_id: str) —> Customer:

<>

Retrieves a customer

directly by their unique ID. Agent
DB
@is_tool(ToolType.WRITE)
def toggle airplane_mode() —> str:
Turns Airplane Mode ON or
OFF. When ON, it disconnects
all wireless communications < >
including cellular, Wi-Fi, User
and Bluetooth. DB

[[customers]]

customer_id = "C1001"
full_name = "John Smith"
date_of_birth = "1985-06-15"
phone_number = “5655-123-2002"

World

[device]

sim_card_status = "active"
airplane_mode = false
battery_level = 80
data_enabled = true

Goal: T2 shifts from single-control to dual—control (Dec-POMDP)—both agent and user act
via tools in a shared world stressing coordination & guidance

Task and Env:

* Twassingle DB + agent tools, with an LM-only user
* T12adds two databases (Agent DB + User/Device DB) and separate toolsets; the user is a
simulator constrained by available tools and observable state of the environment

Victor Barres et al. T>-Bench: Evaluating Conversational Agents in a Dual-Control Environment. arXiv 2025.

https://arxiv.org/abs/2506.07982

T’-bench

https://arxiv.org/abs/2506.07982

Data Generation Pipeline:

* Tused manual schema/APls, LM-assisted data, manual scenario
authoring/validation

* T2 pipeline uses LLM-drafted Product Requirements Document (PRD) —
code/mock DBs/unit tests, plus user DB & tools, then do programmatic
compositional tasks creation from atomic subtasks with init/sol/assert
and auto-verification

How to Evaluate: T evaluates via end-state DB comparison. T2 introduces
categorical checks—environment assertions, communication assertions,
natural language assertions, action assertions; both report pass@k

https://arxiv.org/abs/2506.07982

GDPval

https://openai.com/index/gdpval/

Manufacturing Engineer: Design 3D Financial and Investment Analyst: Create Registered Nurse: Assess skin lesion
model of cable reel stand for assembly line competitor landscape for last mile delivery images and create consultation report
Prompt + task xperk human Prompt + task &P human i Prompt + task context: Experienced human deliverable:

Ptor al of propored (oncept

Cverall deaign wes axploded v of componants

Goal: Measure LLM performance on economically valuable, real-world knowledge-work
tasks, comparing Al deliverables to industry experts across diverse occupations

me » =

Task and Env: Each task is a realistic work assignment with reference files/context (docs,

data, assets). Models produce a one-shot deliverable (e.g., doc, slide deck, spreadsheet,
diagram, media)

OpenAl. GDPval: Evaluating Al Model Performance on Real-World Economically Valuable Tasks. 2025.

https://openai.com/index/gdpval/

GDPval

https://openai.com/index/gdpval/

Data Generation Pipeline: Tasks authored by vetted professionals (avg 14 yrs
experience), pass a multi-step review (=5 rounds) plus model-based validation;
prompts mirror day-to-day work and include attachments; gold deliverables are

experts’ own solutions
How to Evaluate:

* Blinded expert graders from the same occupations rank Al vs. human
deliverables as better / as good as / worse

e Also compare time/cost
* Good example of a benchmark with low contamination risk and hard to get
saturated as tasks require domain experts and tied to concrete work product

https://openai.com/index/gdpval/

CRMArena

https://arxiv.org/abs/2411.02305

Goal: Evaluate LLM agents on professional
Customer Relationship Management (CRM)
workflows in a realistic, enterprise sandbox

Task: 9 tasks across 3 personas (Service
Agent, Analyst, Manager): New Case
Routing, Knowledge QA, Top Issue
Identification, Monthly Trend Analysis etc.

Env: Live Salesforce sandbox (Simple Demo

Org) with Ul & API access; actions via
SOQL/SOSL or function calls; Rich
enterprise schema (16 objects)

{ CRM Data Generation

E
©

| Salesforce Service

O
Large language model
| Cloud schema

A
e

Diversity & Ouallty Assurance | ____ -

% B

i
| Deduplicator ~ Content verifier Format vermer

,,,,,,,, ‘ Database Schema . |
1 _ : /'

Query Instance Generation

During the last [TIME_PERIOD], which agent had ...
/ Seed query /

/ /
/ o e /,//
ﬁ Vi months ——_
Randomly sampled variable \ 7

N2
\ 4

Latent variables
Answer co\mputalion During the last 3 months, which agent had ...

N Filled-in query

005Ws000001xYI3IAE i
paraphrase
Ground-truth answer -
., Generated CRMArena
Database 1|, = T 9 Tasks

1,170 Instances

Agent Benchmarking

ffffff Large Language Mndels . *l Agentic Frameworks }
e ;
|

Act
m ReAct
Function Calling

@g

Kung-Hsiang Huang et al. CRMArena: Understanding the Capacity of LLM Agents to Perform Professional CRM Tasks in Realistic Environments. NAACL 2025.

https://arxiv.org/abs/2411.02305

CRMArena

https://arxiv.org/abs/2411.02305

Data Generation Pipeline:

* LLM synthesis on Salesforce Service Cloud schema; introduce latent variables
(e.g., agent Skill, customer ShoppingHabit) to create realistic causal patterns.
{0BJ;

* Mini-batch prompting — de-duplication (string match) + dual verification
(format & content) before upload; LLM paraphrasing for query diversity

How to Evaluate:

e Automatic metrics per task: F1 for Knowledge QA; Exact Match on ground-truth
IDs for all other tasks; optional pass@k to report multi-run
reliability/consistency

« Also reports #turns/tokens/S cost

https://arxiv.org/abs/2411.02305

LegalAgentBench

https://arxiv.org/abs/2412.17259

Goal: Evaluate LLM agents on realistic Chinese legal workflows that require
multi-hop retrieval/reasoning and legal writing with tool use.

Task and Env: Multi-turn agent interaction over a text-based environment
built from 17 corpora (14 tabular DBs + 3 retrieval corpora) with 37 tools (28
DB tools, 5 math, 3 text retrievers, 1 system “Finish”). Agents must plan, call
tools with parameters, read observations, and iterate.

* E.g. “Which court handles the highest-value cases of <entity>?"
(requires chaining court/case DB tools).

https://arxiv.org/abs/2412.17259

LegalAgentBench
https://arxiv.org/abs/2412.17259
Data Generation Pipeline: (1) Build a planning tree from tool-call

dependencies; (2) select serial (1-5 hop) and parallel paths; (3) choose entities
that execute successfully; (4) rewrite questions with GPT-4 to hide solution
paths and match real phrasing; (5) programmatically generate answers via the
toolchain; (6) human verification of questions, paths, and answers.

How to Evaluate:

* Success Rate: keyword overlap with gold key_answer.

* Process/Progress Rate: includes intermediate key middle keywords to
reward partial progress.

* Other Metrics: BERTScore and token count for efficiency.

https://arxiv.org/abs/2412.17259

What are Green Agents?

Testing my Agent

* Like math exams are designed by math
teachers and physics exams by physics
teachers, Different assessments are
defined by a special hosting agent, or
green agent.

e This green agent determines the type of
assessment and defines the specific tasks
to be performed.

 The other agents involved are called
participant agents, or

Testing my Agent

* Why “Green” and “White”?

* The color-based naming comes from the project’s early days. When
exploring safety benchmarks, the team discussed red-teaming and
blue-teaming setups. To refer to judges and other participants, we
temporarily introduced more colors—green and gray. Over time,
“green agent” became the established name for the hosting agent,
while all others were simplified into “white agents.”

Responsibilities of the Green Agent

The green agent carries multiple responsibilities:

* Preparing the environment

e Distributing test tasks to participant agents
* Collecting their results

e \Verifying the environment

* Reporting back to the platform

Responsibilities of the Green Agent

* Green agents are specifically designed to serve as evaluators

* They essentially act as the technicians at the repair shop,
orchestrating the entire evaluation process.

e Green agents can interact with the platform through MCP, A2A or
APIs, request permissions and resources, and submit results.

The Full Assessment Flow

The platform first confirms that all agents, including the green agent,
are online and reset.

It then sends a task to the green agent, including the URLs of the
participant agents to be tested.

The green agent orchestrates the interaction: assigning tasks,
supervising execution, managing tools or environments, and
continuously reporting updates back to the platform.

At the end, the green agent submits the metrics—which it defines
through its implementation.

The green agent dictates what metrics get measured

How Green Agents Are Built

Typically, a green agent includes:

* A dataset of test tasks

* A predefined testing process (e.g., which agent to test first, in what
order tasks are sent, and how tools are provided)

* The environment where the tasks run: access to additional tools or
MCP modules required for the tasks, along with instructions for the
white agents on how to use them

How Green Agents Are Built

AgentBeats provides a prompt-based toolkit to help developers
quickly spin up a prototype green agent, making it easy to get started.
For more rigorous or complex testing—say, strict workflows or custom
environments—developers can also hand-code the logic of a green
agent.

— For class projects, we expect most green agents from unit 2 & 3 &
4 groups will be coding-based green agents; and many green
agents from unit 1 groups may be prompt-based agents

Ultimately, as long as it complies with the A2A protocol, any web

service can serve as a green agent.

Two Types of Projects for Building Green Agents

* |ntegrating an existing benchmark

* Building a new benchmark

Type 1: Integrating Existing Benchmarks

* Goal: Adapt an existing benchmark (already published/tested) and
integrate as a green agent in AgentBeats
— E.g. SWE-bench Verified, Terminal bench

* Largely reuse existing evaluation metrics or rubrics

 Sample ideas:
https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2
EFakbmHpU_z31vnkfOc2Y/

https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2EFakbmHpU_z31vnkf0c2Y/
https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2EFakbmHpU_z31vnkf0c2Y/

Type 1: Integrating Existing Benchmarks

In addition to integration into agentbeats platform, you need to
provide a benchmark quality analysis — checking the quality and
reliability of the existing benchmark.

 Manual Validation: Sample and check data correctness, clarity, and difficulty
* Evaluator Check: Confirm metrics/judges align with true task success
* Bias & Limitation Notes: Highlight any gaps or weaknesses

Also consider expanding the benchmark and correcting the benchmark to
improve its quality, size, and diversity.

Type 1: Integrating Existing Benchmarks

Main Workflows:

* Step 1: Integration
— Convert problem formats to correct format like A2A
— Implement dataset loaders & interfaces
— Add quality checks for correctness & reproducibility
e Step 2: Benchmark Quality Analysis
e Step 3: Correction and Expansion

Type 1: Integrating Existing Benchmarks

Main Workflows:

* Step 1: Integration
* Step 2: Benchmark Quality Analysis: check the quality and reliability

of the existing benchmark.
— Manual Validation: Sample and check data correctness, clarity, and difficulty

— Evaluator Check: Confirm metrics/judges align with true task success
— Bias & Limitation Notes: Highlight any gaps or weaknesses

e Step 3: Correction and Expansion

Type 1: Integrating Existing Benchmarks

Main Workflows:

* Step 1: Integration
e Step 2: Benchmark Quality Analysis
* Step 3: Correction and Expansion
— Correct the benchmark if there are errors
— Expand the benchmark to improve its quality, size, and diversity.

SWE-bench and SWE-bench Verified

https://openai.com/index/introducing-swe-bench-verified/

* Problem (Original SWE-bench):
— Some tasks had underspecified issue descriptions or overly specific/misaligned

tests; setup friction sometimes caused false negatives.
e Correction:
— Added human verification by 93 professional developers on 1,699 samples
* |Issues flagged: 38.3% underspecification, 61.1% unfair unit tests; total 68.3%
of samples filtered out
— Filtered to 500 verified tasks
* QOutcome:
— Curated a higher-quality subset with enhanced task diversity and difficulty balance
— More trustworthy, replicable, and comprehensive benchmark
* GPT-40 reaches 33.2% resolved on Verified (vs. 16% on original using best scaffold),

indicating prior underestimation of capability.

https://openai.com/index/introducing-swe-bench-verified/

Type 2: Building New Benchmarks

* Create new benchmarks (no existing source)

* Realistic daily tasks — showcase agentic reasoning

* Scope by units:
— 1-unit students: focus on prompt design + simple data generation
— >1 units: include evaluation rubrics & multi-round setups

Type 2: Building New Benchmarks

e Tasks should reflect useful, real-world scenarios
— e.g., organize calendar, schedule meetings, manage to-dos

e Evaluation: Automatic or lightweight human checks

* We encourage you to build multi-agent benchmarks (e.g., Synthesizer
+ Analyzer roles)

Step-by-Step Checklist for
Building Your Green Agent

Step-by-Step Checklist

1. Choose the task you want to evaluate on
- E.g., Ticket-booking agent

Step-by-Step Checklist

2. Design the environment that the agents being tested needs to run

IN

The tools that the agent can interact with, the actions that the
agent can make, and the env feedback to the agent after each
action

E.g., Tools can be web browser or an APP for ticket booking.
Actions can be mouse clicking and keyboard typing, or the APlIs
provided by the APP. Env feedback can be the new webpage
popped up every time the agent clicks on a button.

Step-by-Step Checklist

3. Design the metrics that your green agent
evaluates with

- E.g., the success rate of booking a ticket; how
cheap the ticket is; whether the ticket
satisfies user’s requirements; etc.

Step-by-Step Checklist

4. Design test cases to evaluate your green agent

Think about different scenarios of white agents trying to complete the task
Design test cases of white agents succeeding/failing to complete the task in
different ways, along with ground-truth eval result for these cases.

Include as many edge cases as possible

Use these test cases to evaluate if your green agent gives reliable evaluation
results.

E.g., test cases can include a white agent successfully books the ticket; a
white agent books the wrong ticket/a more expensive ticket; a white agent
fails to find the website for booking tickets; etc.

NeurlPS 2025 Datasets & Benchmarks Track Call for Papers

The NeurlPS Datasets and Benchmarks track serves as a venue for high-quality publications on highly valuable machine learning datasets and benchmarks crucial for the development and continuous
improvement of machine learning methods. Previous editions of the Datasets and Benchmarks track were highly successful and continuously growing (accepted papers 2021, 2002, and 2023, and best paper
awards 2021, 2022, 2023 and 2024. Read our original blog post for more about why we started this track, and the 2025 blog post announcing this year's track updates.

Dates and Guidelines
Please note that the Call for Papers of the NeurlPS2025 Datasets & Benchmarks Track this year will follow the Call for Papers of the NeurlPS2025 Main Track, with the addition of three track-specific points:

¢ Single-blind submissions
¢ Required dataset and benchmark code submission
» Specific scope for datasets and benchmarks paper submission

The dates are also identical to the main track:

¢ Abstract submission deadline: May 11, 2025 AoE

* Full paper submission deadline: May 15, 2025 AoE (all authors must have an OpenReview profile when submitting)
¢ Technical appendices and supplemental materials deadline: May 22, 2025 Aot

¢ Author notification: Sep 18, 2025 AoE

* Camera-ready: Oct 23, 2025 AoE

Accepted papers will be published in the NeurlPS proceedings and presented at the conference alongside the main track papers. As such, we aim for an equally stringent review as in the main conference track,
while also allowing for track-specific guidelines, which we introduce below. For details on everything else, e.g. formatting, code of conduct, ethics review, important dates, and any other submission related
topics, please refer to the main track CFP.

OpenReview

Submit at: https:/openreview.net/group?id=Neur|PS.cc/2025/Datasets and Benchmarks Track

The site will start accepting submissions on April 3, 2025 (at the same time as the main track).

Note: submissions meant for the main track should be submitted to a different OpenReview portal, as shown here. Papers will not be transferred between the main and the Datasets and Benchmarks tracks
after the submission is closed.

Project Grading Rubric [for new benchmarks]

Goal & Novelty: Is your benchmark important, novel, and covering new capability
space?

Scope & Scale: Is the benchmark large and diverse enough to give reliable results?
Evaluator Quality: Are metrics clear? Is your judge/evaluator high quality and
consistent?

Validation: Did you perform manual checks or spot validation on the evaluation
outputs from your green agent?

Reliability: Do your evaluation scripts and green agents run robustly on AgentBeats?
Quality Assurance: Any bias or contamination checks included?

Realism: Is the benchmark realistic, e.g., with real world workload, instead of toy or
unrealistic settings

Impact: Is the benchmark reusable, well-documented, and presented clearly?

Project Grading Rubric [for existing benchmarks]

Analysis: Analyze quality issues of the original benchmark and find any flaws it has.
Faithfulness: Is your implementation reproducing the results from the original
benchmark (excluding the flaws you fixed)?

Quality Assurance: Is your implementation correcting flaws in the original benchmark
and expanding the coverage of the original benchmark?

Evaluator Quality: Are metrics clear? Is your judge/evaluator high quality and
consistent?

Validation: Did you perform manual checks or spot validation on the evaluation
outputs from your green agent?

Reliability: Do your evaluation scripts and green agents run robustly on AgentBeats?
Quality Assurance: Any bias or contamination checks included?

Impact: Is your implementation reusable, well-documented, and presented clearly?

Green Agent Project Ideas

. https://docs.soogle.com/presentation/d/1TjtEih689dZBsGxmAmMcSp2

EFakbmHpU z31vnkfOc2Y/

https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2EFakbmHpU_z31vnkf0c2Y/
https://docs.google.com/presentation/d/1TjtEjh6g9dZBsGxmAmcSp2EFakbmHpU_z31vnkf0c2Y/

Coding Example:
Supporting Tau-bench

1. Sort out the interface

Principles:
1. Human should be able to solve it if presented the same task.

2. The solving procedure should be as agent-friendly as possible. (so
that the agent can solve it)
Example:
- Web browsing agent: url vs. tool actions

- Coding agent: provide coding env vs. provide repository & expect
patches

- Werewolf game agent: text-based vote confirmation vs. tool-based
confirmation

1. Sort out the interface

* Read the paper — think about task formulation
* Read their codebase — see how to deliver the

(a) T-bench setup (b) Example trajectory in t-airline , 28 raidomsseed (cont lgseed)
29 time_str = datetime.now().strftime ("%m%d%H%M%S")
)) & Change flight - : . p ;. .
g get_user_details book reservation ... 30 ckpt_path = f"{config.log_dir}/{config.agent_strategy}-{config.model.split('/")[-1]1}-{co
: : . TR0 0] 31 if not os.path.exists(config.log_dir):
Tools cancel reservation update_reservation_flights 32 os.makedirs(config.log_dir)
@ {‘cabin’: ‘basic_economy’, 33
‘created at’; *20240514-1800°...) (Read database)) .) .
P I T 34 print(f"Loading user with strategy: {config.user_strategy}")
@9 Current time is 2024-5-15 15:00:00 EST. JK9019 is basic economy and cannot £51035 env = get_env(
B07] - Basic economy cannot be modified. be changed. But since it is within 36 contiatenv
- Basic economy cannot be cancelled after 24 hours 24h, I can cancel it and book a new 9- !
Agent of booking... (more rules omitted) one. Do you want me to do it? 37 user_strategy=config.user_strategy,
I 38 user_model=config.user_model,
User instruction as system prompt & Qi 0 G i e e 39 user_provider=config.user_model_provider,
You are mia_li_2017, and want to change the your , 40 task_split=config.task_split
& most recent reservation to fly to SF instead of LA on cancel_reservation[JK9019] !
the same day. If change is not possible, you want the 41)
User agent to cancel and rebook ... You are concise. . {..., ’status’: ‘cancelled’} (Write database) 42 agent = agent_factory(
43 tools_info=env.tools_info,
Figure 1: (a) In 7-bench, an agent interacts with database API tools and an LM-simulated user to g wiki=env.wiki,
complete tasks. The benchmark tests an agent’s ability to collate and convey all required information 45 config=config,
from/to users through multiple interactions, and solve complex issues on the fly while ensuring it 46)
follows guidelines laid out in a domain-specific policy document. (b) An example trajectory in 47 end_index = (
T-airline, where an agent needs to reject the user request (change a basic economy flight) following 48 len(env.tasks) if config.end_index == -1 else min(config.end_index, len(env.tasks))
domain policies and propose a new solution (cancel and rebook). This challenges the agent in 49)
long-context zero-shot reasoning over complex databases, rules, and user intents. 50 results: List[EnvRunResult] = []

51 lock = multiprocessina.Lock()

1. Sort out the interface

Two key challenges:

1. Cross-agent tool use
a. Inthe original repo, tool is directly provided to “completion” interface

b. How shall we evaluate using a standardized agent interface

I. “Special” white agents, with tool access
1. Less standardized

ii. Explain this tool-access request to white agent, then ask for tool names / args
1. Problem: cannot leverage agent internal tool-call mechanisms

iii. Provide an MCP — require dynamic discovery

2. Migrate evaluation
a. Tool trace is not directly visible to green agent

N r

1. Sorto

Two key challenges:

1.

Cross-agent tool use

a. Inthe original repo, tool i.

b. How shall we evaluate us
I. “Special” white agents, \
1. Less standardized

ii. Explain this tool-access 1
1. Problem: cannot levera

iii. Provide an MCP — requ

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

1

for _

in range(max_num_steps):
res = completion(
messages=messages,
model=self.model,
custom_1lm_provider=self.provider,
tools=self.tools_info,
temperature=self.temperature,
)
next_message = res.choices[0].message.model_dump()
total_cost += res._hidden_params["response_cost"] or 0
action = message_to_action(next_message)
env_response = env.step(action)
reward = env_response.reward
info = {*xinfo, skenv_response.info.model_dump()}
if action.name != RESPOND_ACTION_NAME:
next_message["tool_calls"] = next_message["tool_calls"][:1]
messages.extend (
[
next_message,
{
"role": "tool",
"tool_call_id": next_message["tool_calls"][@]["id"],
"name": next_message["tool_calls"][@]["function"]["name"],
""content": env_response.observation,

Migrate evaluation

a. Tool trace is not directly visible to green agent

https://github.com/sierra-research/tau-bench/blob/main/tau_bench/run.py#L20

https://github.com/sierra-research/tau-bench/blob/main/tau_bench/run.py#L20

2. Design the workflow

» Kickoff script: send message to green agent to kick off the test

— What information to include

— Message format
* Green agent: coding-based, import tau_bench

— How to change to the initial prompt

— How to incorporate the final scoring procedure / what are the metrics
* White agent: prompt-based / LLM-workflow

— Which SDK to use

— What prompt might help with the performance

import asyncio

2 import json
from a2a.types import SendMessageSuccessResponse
from .my_util import send_message_to_agent

task_config = {

tenyvit:iretaillty
"user_strategy": "1llm",

’ mode ‘openrouter/«
"user_model": "openai/gpt-40",

"task_split": "test",
"task_ids": [1],

kick_off_message = f"""

You should use the following configuration:
<task_config>

{json.dumps (task_config, indent=2)}
</task_config>

nun

async def main():

agent_url = "http://localhost:9999/"

response = await send_message_to_agent(kick_off_message, agent_url)

if isinstance(response.root, SendMessageSuccessResponse):
response_text = response.root.result.parts[@].root.text
print("Agent response text:", response_text)

else:
print("Agent response:", response)

if __name__ == "_ _main__":
asyncio.run(main())

Launch tau-bench to assess the tool-calling ability of the agent located at http://localhost:8001/ .

class TauGreenAgentExecutor(AgentExecutor):
def __init__ (self):
self.history = []

async def execute([] I I l []

self,
context: RequestContext,

Green agent

evaluation workflow
user_input = context.get_user_input()

task_config = parse_task_config(user_input)
url = parse_http_url(user_input)

assert len(task_config['task_ids']) == 1, "For demo purpose, here we run only one tasf if __name__ == "__main__":
task_index = task_config['task_ids'][0] agent_card_toml = load_agent_card_toml()
tau_env = get_env(agent_card_toml['url'] = f'http://{HOST}:{PORT}/"'

env_name=task_config['env'],
user_strategy=task_config['user_strategy'l,
user_model=task_config['user_model'],
user_provider="openai",

request_handler = DefaultRequestHandler(
agent_executor=TauGreenAgentExecutor(),

task_split=task_config['task_split'l], task_store=InMemoryTaskStore(),
task_index=task_index,)

)

env_reset_res = tau_env.reset(task_index=task_index) app = A2AStarletteApplication(

obs = env_resst_res:observation agent_card=AgentCard (xxagent_card_toml),

info = env_reset_res.info.model_dump() http_handler=request_handler,

task_description = tau_env.wiki + f"""

)
perere o b ot e vow e vee: (MCP-based impl would be different)., o, nost=1o.0.0.0', portssso)

{tau_env.tools_info}

In the next message, I'll act as the user and provide further questions.
In your response, if you decide to directly reply to user, include your reply in a <reply> </reply> tag.

If you decide to use a tool, include your tool call function name in a <tool> </tool> tag, and include the arguments in a <args> </args> tag in JSON format.
Reply with "READY" once you understand the task and are ready to proceed.

res_check_ready = await send_message_to_agent(task_description, url)

print("res_check_ready:", res_check_ready.root.result.artifacts[@].parts[@].root.text)

is readv = "READY" in res check readv.root.result.artifactsl@].partsl@].root.text.uooer()

import

from zoneinfo import

from google.adk.agents import Agent

from google.adk.models.lite_11lm import LiteLlm
from dotenv import load_dotenv

load_dotenv()

root_agent = Agent(
name="general_agent",
model=LitelLlm(model="openrouter/google/gemini-2.5-flash"),
description=(
“"A general purpose agent that can assist with a variety of tasks."
)v
instruction=(
"You are a helpful assistant."”
)r
tools=[],

from google.adk.a2a.utils.agent_to_a2a import to_a2a

Make 7 t A2A-compatible
a2a_app = to_aZaMroot_agent, port=800nﬂ

your agen

Next step: integration with AgentBeats

After impl green/white/kick_off — 90% DONE

Next: make it reproducible & open accessible — leverage
agentbeats

Update checklist:

1. How to get (remote) agent URL / MCP server URL
2. How to access LLM API

3. How to report result & add traces

4. Package the repo for platform hosting

— see documentation

Exposing an Agent
H e I f Before Exposing: Your agent code runs as a standalone component, but in this scenario, you
want to expose it so that other remote agents can interact with your agent.

https://google.github.io/adk-docs/a2a/intro/ L :

| Your Agent Code |
| (Standalone) |

https://a2a-protocol.org/latest

http://ape.agentbeats.org/

After Exposing: Your agent code is integrated with an A2AServer (an ADK component),
making it accessible over a network to other remote agents.

Fommmm it Agent Programming Exercise (APE) -
| A2A Server | . “\\ Evaluation Toolkit
| (ADK Component) |[<-------- +
2 A2A Protocol e e + | A2n seRvice uRL - AUTHORIZATION TOKEN (0PTIONAL
| | it hocanost30001 Boaror ok
A2A Protocol q A%
- CD_ Agent2Agent (A2A) Protocol : Evaluation Tests
——= oo + .
Documentation > unning all tests takes approximately 3 minutes. Use F12 to open developer tools for detailed logs.
?f::fili Samples >) | Your Agent Code | | 1, Ltk cusion ssvr semerr QU el ..
» What is A2A Protocol? 5
SO Reference > | (Now Accessible) |
Community The Agent2Agent (A2A) Protocol is an open standard developed by Google and donated to the Linux Foundation designed to 3 understanding:selectwhatisinthe @) X 4. Web browsing:win Tic-tac-toe [o]
Partners enable seamless communication and collaboration between Al agents. oS ssisis s s Sianinsiss s s + |
eeien In a world where agents are built using diverse frameworks and by different vendors, A2A provides a common language, breaking |
down silos and fostering interoperabilty. . g
| (Network Communication)
Build with & ADK (c . ecquip with 4 MCP X ==} local agents, and humans. v
oo +
Get started with Agent2Agent (A2A) Protocol | Remote Agent (s) |
© Video Intron <8 min I Read the Introduction | (Can now communicate) |
Understand the core ideas behind A2A. L e e i s o

ntroductiondo/Adent2Agen
—Handling Real Work > Whatis oAz
ifecycle & Polling - Key Concepts

https://google.github.io/adk-docs/a2a/intro/
https://a2a-protocol.org/latest/
http://ape.agentbeats.org/

c

® 127.0.0.1:5001

Helpful tools

A2A Inspector

http://localhost:8001

» HTTP Headers

V Agent Card

Agent card is valid.

"capabilities": {},

"defaultInputModes": [
"text/plain”

1

"éefaultOutputModes" i
"text/plain"

’
"description": "A general purpose agent that can assist with a variety of tasks.",
"name": "general_agent",
"preferredTransport": "JSONRPC",
"protocolVersion": "0.3.0",
"skills":

T

HGlprl tOO|S (GOOgle ADK, for OpenAl, check the online

SESSION ID df f @

Event 8 of 10 .

Request Response What is the weather in New York?

4 get_weather
s get_weather |

@ weather_time_agent v get_weather

. get_current_time
The wesather in New York is sunny with a temperature of 25 degrees Celsius (77 degrees Fahrenheit).
What is the weather in Berkeley?
4 get_weather

v get_weather

Q Weather information for 'Berkeley' is not available.

What's the time now

@ Please tell me the city you want to know the time for.

g 4 get_current_time
.

v get_current_time

Sorry, | don't have timezone information for Berkeley.

Reference & Credits

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1246/slide
s/cs224n-spr2024-lecturell-evaluation-yann.pdf
https://arxiv.org/abs/2503.16416

https://arxiv.org/abs/2507.02825

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1246/slides/cs224n-spr2024-lecture11-evaluation-yann.pdf#page=4.00
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1246/slides/cs224n-spr2024-lecture11-evaluation-yann.pdf#page=4.00
https://arxiv.org/abs/2503.16416
https://arxiv.org/abs/2507.02825

Q&A

agentbeats concepts & platform / standardizing agent evaluation / ...

